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I APOLOGIES AND INTRODUCTION 

Strong interaction theories cover a broad and interesting range 

of ideas and phenomena. Although we all in our logical hearts expect 

that we will someday know from the same physical theory the explana- 

tion of why, say, the observed baryons come in octets and decimets 

and why the intercept of secondary Regge trajectories have n(O) = i/2, - 

at this point in time the views on these and other topics are at best 

fragmented. In order to present today a finite discussion of some 

ideas in hadronic physics, I have been forced to choose among a large 

selection of fascinating subjects. I propose, then, to address three 

questions during this talk: 

1. Rising total cross sections and theories which attempt to 

understand this. 

2. Gauge theories of strong interactions and the possible 

relevance of such field theories to scaling. 

3. Dual String Models 

Obviously I have left out vast numbers of worthwhile topics; I 

trust that my distinguished colleagues speaking in other sessions will 

cover them in depth. 
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II. RISING TOTAL CROSS SECTIONS 

There can be no doubt that the most interesting new phenomenon 

to have been observed in hadronic physics during the last year is the 

_ 10% rise in the proton proton total cross section over the range of 

CERN-IRS energies, 
1 

400 (GeV)’ 5 s 2 3000 (GeV)2. I show a casual 

picture of this in Fig. 1 which I borrowed from the nice review talk of 

M. Jacob. 
2 

Two basic views of this rise in o ” can be taken: T 

(a) It is an indication of a real trend for o to continue to 
t 

rise probably saturating the Froissart bound. This is supported primarily 

by the “eikonal school” although occasionally a bootstrap theorist is 

found in this corner. 

(b) The rise in o 
T 

is a transient phenomenon. At larger 

energies (alas, not yet available) o7 will settle into its real asymptotic 

behavior which is 

(i) crT decreases as a very small power of s or 

(ii) o 
T 

eventually goes to a constant. 

Let’s discuss these ideas in order. The theories which yield c T 

saturating the Froissart bound usually begin with the eikonal form of 

the elastic scattering amplitude3 

[ e iX(s,b) -11 I (1) 

where a is a two vector momentum transfer in the x, y plane when the 
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beam comes in along the z-axis; t = - 1 &I 2. X (s,k) is the eikonal phase 

as a function of the energy, s, and the impact parameter b. X, which 

has the dynamics in it , is calculated from some “born graphs” or some 

infinite set of Feynman graphs. 
4 

In quantum electrodynamics if one 

takes certain sets of tower graphs (see Fig. 2) then for fixed b, X (s,?.J 

behaves as 

Ws,l?) - s 
1+c 

, E> 0 (2) 

and the b dependence is rather like 

X(s,kd - e -@ 
(3) 

where p is some characteristic mass. The T-matrix as a function of 

s and h then is very close to a 0 function 

eiX(S’b)-l = Tel(s,b) = (4) 

and this gives 

so 

Tel(s,t) = 2vi s (rolog s)’ [gyy;$y)], (5) 

CTt(S) = 77 r: (log s)~ . 

This exactly saturates the Froissart bound 

UT(S) 5 (log s? , 

(6) 

(7) 
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and is to be thought of as the leading approximation to an expansion of 

aTO’ d s m ecreasing powers of log s. Indeed according to Jacob’ a fit 

to the pp data can be achieved by 

uT(s) = 38mb + 0.68mb log2 ‘lab in GeV/c 
100 

Some comments are in order. First, it must not be thought that 

this (log s)~ is a firm prediction of quantum field theory. The specific 

form for the eikonal phase is a choice abstracted from a summation of 

leading behaviors of selected Feynman graphs - if o does not behave 
T 

2 
as (log s) , one does not throw away field theory - only perhaps some 

field theorists. Second, in these same models the average multiplicity 

ii(s) of produced particles grows as a small power times log s. Third, 

because the leading singularity in the J-plane is more complicated than 

a pole, one expects long range correlations yielding integrated correla- 

tion functions f k (s) which behave as 

f-w) - uog s) 
k 

(9) 

do 
and finally,in these models the diffraction peak in t of 

elastic 
dt 

shrinks as (log s)~ as one sees directly from Eq. (5). This last point 

is not a feature of present pp elastic data. 2 

The same structure for Tel(s, t) comes from a marriage of the 

absorption model with the multiperipheral model. 5 
Of course, the same 

critical comments apply if one substitutes for “abstractions from field 



-6- NAL-Conf-73/56-THY 

theory” the phrase “conjectures from a presumed self consistent theory 

of diffraction scattering. ” 

To saturate the Froissart bound and have total cross sections 

rising slowly forever has a definite aesthetic appeal. The details of 

the theories which yield c T 
Q (log s)‘ are less appealing. One must 

deal with the observations made above, especially the shrinkage of the 

elastic diffraction peak, and one must provide some understanding for 

the unusually large energies at which the (log s)~ growth sets in; note 

the scale setting factor of 100 GeV/c in Eq. (8). 

Now to the view that the rise in CT 
+ 

is a transient phenomenon. 

Basically there are two schools of thought. The first says that what we 

are seeing is just the effect of two or more Pomeron cut exchange 

(Fig. 3) which is emerging as the contributions of secondary Regge 

trajectories with ~(0) = l/2 disappears into the noise. One would expect 

o (s) to take the form 
T 

- 
b+log elab a ) +o &---) . (10) 

Indeed, a fit to the ISR data of the form2 

u = 6Omb 1 - 3mb 
T 3+ log (plab in GeV/c ) > ’ (11) 

seems acceptable, if not compelling. From either a theoretical or a 

phenomenological point of view there is little one can say to fault this 
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attitude. It is true that no one has yet produced a consistent, well 

formulated theory of diffraction scattering which yields (10) without 

having other ghastly features. 
6 

The second school of thought attributes the rise in oT(s) to the 

contribution of the triple Pomeron coupling in Tel. 
7 

The triple Pomeron 

coupling is thought to give a contribution to cr (s) of the form 
8 

7 

g (0) 
OTP(S) = $-, log (1 + T log s) (12) 

where (Y ’ is the slope of the Pomeron trajectory @p(t) = i+a’t, $(O) is 

the triple Pomeron coupling appropriately normalized, and b is a slope 

parameter associated with g,(t) 

g,(t) = gp(0)ebt. (13) 

It is argued that when 2cr’/b log s is small, then the triple Pomeron 

formula gives an effective log s rise to o and later flattens off to the 
T 

essentially irrelevant log (log s). 

The major question associated with this explanation of the rise 

in o 
7 

would appear to be numerical. In order for this argument to be 

viable 

(14) 

If 0’ = 1/2 and b is a fairly normal slope of 10 in (GeV) -2 
, then we may 
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use this idea for 

log s _c 10, (15) 

which does cover the ISR range. However, to match the 4mb rise in o 
T 

as log s varies from about 4 to 8, one needs quite a sizeable gyp. So 

large, in fact, that it is likely to be inconsistent with the values of g,(O) 

one infers from the peaking of the X distribution in pp + p + anything 

near X = 1 at ISR energies 
2 

- a phenomenon which is generally considered 

to be the only convincing evidence for the existence of a triple Pomeron 

coupling. 

Numerical questions aside one may raise theoretical eyebrows at 

the use of the triple Pomeron. The original reaction to the log (log s) 

growth in o 
T 

arising from the triple Pomeron coupling was that it was 

not a virtue, but required g,(O) to vanish. 
8 

This led to a variety of 

disasters about vanishing Pome ron couplings, the most striking of 

which was the decoupling of the Pomeron from total cross sections 

themselves, 9 thus removing the rationale for a Pomeron with a(O) = 1 

in the first place. By taking an attitude that makes a virtue out of 

disaster, it seems to me that one has really postponed the difficult and 

interesting issue of how oT(s) really behaves. Only the Berkeley school 

which advocates ~(0) < 1 has a logical answer to the hard question. 

Eventually oT must go to zero as a small power after the amusing, but 

transient, effect of the triple Pomeron rise wears itself out. 
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Another objection altogether is raised by Blankenbecler and his 

collaborators 
3 

who argue that the triple Pomeron contribution to the 

Feynman graph like Fig. 4, say Fig. 5, contributes not + g,p.log (log s) 

to cT but -gp log (log s) and, never mind orders of magnitude or detailed 

fits, this has the wrong sign to explain a rise in o . 
- -r 

This objection 

harks back to the ancient controversy over the sign of the two Pomeron 

cut to which the triple Pomeron piece of T 
el is one contribution. The 

Feynman graph view says that when one takes Im Tel from the Y-graph 

of Fig. 5 to find its contributions to cr T’ only one of these, Fig. 6a, is 

connected with the triple Pomeron coupling usually measured in inclusive 

processes. There are two other cuts of Fig. 5 which contribute to Im 

Tel looking Fig. 6b and they yield an amount -2gp log (log s) to o . 
T 

Let gs look into this argument a bit more. It is clear that we 

cannot stop with the Y-graph of Fig. 5 since we will eventually have a 

negative d . T 
So we must sum up whole sets of contributions to Im Tel 

to find a positive cr . Call #, T 
the triple Pomeron coupling defined by 

Fig. 5; it is a coupling in a model only and isn’t the physical gp measured 

in inclusive reactions. Call p the elastic coupling coming, say, from the 

ordinary ladder, as in Fig. 7. Now representing the ladders by a 

wiggly line (bare Pomeron) consider the sum of sets of graphs as in 

Fig. 8. The graphs of Fig. 8a give with the “minus sign rule” a 



NALConf-73/56-THY -lO- 

contribution to o of T 
CT(S) a -P3g log (log; s) ~ 

- 
1+g 

2 
log (log s) 

Those of Fig. 8b give 

fJ (s) - T p2/1+gp2 log (log s) , 

and from Fig. 8c we have 

UT(S) - 
p4gp2 [log pg s ,] z 

l’ gp2 log (log s) 

(16) 

(17) 

(18) 

Adding these contributions we find a net CT -r from triple Pomeron 

diagrams to be positive for large log (log s) and to behave as 

4 
u 

T*p 
log (log s). (19) 

Does one infer then that p=O, since to produce log (log s) even in the 

simplest diagram of Fig. 8 we had to require c(O) = 1 for the input 

ladder? I think not. Probably one is forced to the conclusion that 

without some rather more consistent theory of diffraction, the Feynman 

graph argument only dents hut does not yet destroy the triple Pomeron 

couplers. That they have enough trouble on their own, we have already 

pointed out. 

I think that a fair conclusion from the foregoing discussion is that 

the origin of the rise in o7 and its non-transient implications for hadronic 

theories remains an open and fascinating question. 
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III. GAUGE THEORIES FOR STRONG INTERACTIONS 

What I wish to discuss in this section are ideas which involve a 

certain level of speculation but are so exciting that no one ought to 

ignore them. As a fallout of the intense interest focused on renoralizable 

gauge theories of the weak and electromagnetic interactions it has been 

suggested that non-Abelian gauge field theories, of which the ancient 

Yang-Mills theory is a classical example, may also be relevant to 

hadronic physics. 
10 

In particular a rather recent development involving 

detailed properties of the renormalization gm up for these non-Abelian 

gauge theories has raised the amusing prospect 
11 

that one may be able 

to understand the scaling properties observed in deep inelastic electron 

scattering at SLAC. 

It is not my purpose to turn us all into giant experts on the renormal- 

ization group in twenty minutes, but to briefly draw attention to the new 

ideas which are around and some problems associated with them. 

What the renormalization group enables one to do is give a compact 

discussion of the behavior of various Green functions as the momenta 

involved approach large spacelike values. Then there are constraint 

equations on the Green functions which were derived by Callan and 

Symanzik 12 several years ago. These express how the masses and 

coupling constants of the field theory presumed to govern the interactions 

underlying the Green function may be varied. 
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A typical equation of this form reads 

& +p(g)a - ny(g) ag 3 
G ;iy (Pi) = 0, (20) 

where m and g are the renormalized mass and coupling constants of the 

field theory, p(g) and y(g) are finite functions of g alone and G (n) is 
ASY 

the asymptotic form of an n-point Green function. The functions p and 

y are known only in perturbation theory for all but the most special 

models. 

The key observation is that zeroes of p(g) where the slope of p is 

negative govern the asymptotic behavior of G (n). (See Fig. 9). For 

example, if p(g) has a simple zero at go and dp/ dg Igo < 0, then for all 

momenta in Gcn) gomg simultaneously to space-like infinity pi = Eki, 

5 -c m, Gin) behaves as 

.(n) _ E4-n x c-nv(go)x f(n)(g 
ASY 

) 
0’ 

(21) 

4-n. where 5 IS Just reminding us of the normal dimensions of G (n) , 
-ny(g ) 

5 o is a measure of the “anomalous dimensions” due to the 

renormalization procedure, and f (n) (go) is some finite function of go. 

If y(go) were zero by some miracle, then there would be no anomalous 

dimensions and the theory would be scale invariant: that is, all quantities 

have only naive dimensions ~ 
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Very little is known in general about the zeroes of p(g). By its 

definition it turns out that p(O) = 0, but for almost all renormalizable 

field theories d p/ dg 1 g,o>O. So other zeros, wherever they may be 

govern the asymptotic behavior of the Green functions. Furthermore, 

the functions y(g) will, most likely, not also vanish at these zeroes of 

p(g) and such theories will not reproduce the scaling behavior seen at 

SUC; indeed, they will deviate from scaling by powers of q2. 

Now for the good news. In a large class of non-Abelian gauge 

theories it has been found that 
11 

P(g) = -pog3 + O(g5), PO’ 0. (22) 

This means that the value of the couplings of the underlying field theories 

which govern the asymptotic behavior of Green functions is zero coupling. 

That is, free field theories give the asymptotic behavior and corrections 

to those asymptotic values are calculable by perturbation theory. Further- 

more, for free field theories y(g) vanishes since there are no anomalous 

dimensions for a free field. 

The detailed results of these renormalization group studies are 

that there are still logarithmic deviations from exact scaling in most 

instances and in general the approach to scaling is only logarithmic. 

For example, it is still true that for an underlying field theory of vector 

bosons (the gauge fields) and fermions the ratio R = c L/ aT of longitudional 

over transverse photon cross sections for deep inelastic electron 
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scattering goes to zero in the Bjorken limit but 

2 
lim 

q2+ m 
R(X=&, q2)w 4 . 

log q2 
X fixed 

(23) 

And in electron-positron annihilation one finds 

cr -f hadrons +- 
e e 

. +1- 2- x Q; (1 + 0 (24) 

o,--IIc1 q--m i 
ee 

2 + - 
where q 1s now the energy of the e e system and Qi are the charges 

of the constituents of the hadrons. 

Of course, these theories are not without their problems. First 

of all, they are stuck, so far, on logarithmic approaches to scaling. If 

this is verified by the muon scattering experiments at NAL or by e+e- 

annihilation experiments at SPEAR, one will, of course, not regard this 

as a problem. Second, in order to give the vector bosons entering these 

theories some non-zero mass, one conventionally introduces some scalar 

(Higgs) bosons which develop non-zero vacuum expectation values, break 

the underlying gauge symmetry, and yield up masses for the gauge bosons. 

So far it has not been possible to carry this out completely without 

destroying the key result that p’(g=O) < 0. So activists in gauge theories 

have pinned their hopes on another mechanism, invented by Coleman and 

E. Weinberg, 
13 

which takes advantage of the infrared singular behavior 
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of theories involving massless bosons and fermions to dynamically 

break the gauge symmetry and produce masses for the particles in the 

physical spectrum of the initial lagrangian. There is also the hope that 

the infrared behavior is SO singular that the physical spectrum resulting 

from solving the bound state problem will not resemble the underlying 

fields (“quarks” and bosonsland one will not be faced with the usual 

embarrassment of “keeping the quarks in. ” Because of our less than 

dramatic success in solving the bound state problem in less singular 

field theories, one must view this as a strong hope indeed. Finally, 

there is the problem of which gauge group to use for the basic field 

theory. Hints from experiment will only come as the detailed nature of 

the predicted logarithmic approach to scaling is seen; that is, the powers 

of log q’ can yield up significant information. Clearly, however, the 

practical problems are quite non-trivial. Nevertheless, I regard this 

whole scheme as an attractive prospect for really learning something 

concerte about hadronic interactions; whether we will at the same time 

learn all we want to know, I hesitate to conjecture. 

IV. DUAL STRING MODELS 

The thir~d and final subject I propose to consider today is that of the 

string picture in dual theories. You will recall that the spectrum of the 

dual resonance model was noted some years ago by Nambu and Susskind 14 
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to be identical to the excitation spectrum of a string in one dimension at 

every point of which there is attached a four vector Xp(a, -r ) as the actual 

space-time displacement vector of the constituents of the hadron-infinite 

in number and thus continuously distributed in c. To reproduce the dual 

spectrum is then the requirement that XII(o. T) obey the wave equation 

( a2 & - -- 
ao2. a7 

2 
> 

Xp(u,T)=O. (25) 

To achieve this one builds an action out of Xu and its derivatives and 

imposes constraint conditions reflecting the invariances of the action, if 

any, so that the classical Euler-Lagrange equations of motion for the 

independent components of X are just (25). 
P 

The action which has been most thoroughly studied is that proposed 

by Nambu. 14 m which it is taken to be proportional to the invariant two 

dimensional area swept out by the string as it extends in o and moves 

in time T. This action is 

A=-&- i do ;dtl(~~)2-(>)2(>)2~‘, (26) 

0 I-. 1 

where the constant is conventional and the “length” of the string in para- 

meter space has been chosen to be one. (See Fig. ii). The most care- 

ful study of this action has been by P. Goddard, et al. 15 Noting the 

invariance of the action under the general coordinate transformations 
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LJ - f(u, 71, 

and 7 - g(o, T) I 

they choose as auxiliary conditions on X 
P 

and 

gL8xi’ 
a7 

= 0, 

(fg)“+(Z)” = 0. 

(27) 

(28) 

(29) 

(30) 

These guarantee that the independent components of XF satisfy (25). 

When one is willing to work in d space-time dimensions, then the 

two fold invariance of the action means that precisely d-2 components of 

the space-time displacement vector XP(o. 7) are independent. This has 

the consequence that the first excited state created from the vacuum by 

the normal mode operators of XP has only d-2 degrees of freedom, and 

since this is one less than the normal number (one degree of freedom 

always being lost essentially through a mass-shell constraint ), the first 

excited state must be massless. In terms of the Regge intercept of the 

leading trajectory of the dual spectrum, this implies LY( 0) = 1, and further 

that the ground state (vacuum) is a tachyon witha’ m2 = - 1; CY’ is the 

universal slope of the dual model. All theories based on an action like 

(26) with “too much” symmetry suffer from this disease. 

More detailed analysis shows that when one takes this action very 
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seriously and requires that the geometrical generators of the Lorentz 

group which seems manifest in Eq. 26 have the commutation relations 

required by Lorentz symmetry, then there is a restriction on the 

number of space-time dimensions of the theory to d = 26. Physics, 

one recalls, takes place in d = 24. 

There are two attitudes to take at this point: (1) the model action 

is a disaster and must be replaced by one with less symmetry or (2) the 

model action with all its faults is an interesting prototype theory for what 

a “real” theory in four dimensions must look like and deserves further 

intensive study. I think both points of’ view are correct in the usual spirit 

of inquiry. Clearly one needs a better action; nevertheless one may use 

(26) to learn a great deal about any future, more realistic string models. 

The most significant contribution to this latter point of view has 

been by Mandelstam. 
16 By studying the functional integral formulation 

of the quantum theory of the string with (26) as a classical action, he is 

able to reproduce the n-point amplitudes of the dual resonance model and 

to justify the attractive, if picturesque language, of imagining strings in 

space-time coming together and splitting. The basic dual vertex consists 

of one string splitting into two (Fig. 12) and higher point functions are 

similarly described. Mandelstam is also able to explicitly demonstrate 

the role that space-time dimension 26 plays in guaranteeing the Lorents 

covariance of the theory. 
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Although the string model is as yet rather an unphysical entity 

(tachyons and d=26 just smell peculiar 1, it still holds an attractive allure 

and both ought and will be the subject of study for its improvement, per- 

haps to a physically realistic model. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 6a 

Fig. 6b 

FIGURE CAPTIONS 

A representation of the Serpukhov, NAL, and 

CERN-ISR data on the proton-proton total cross 

section. 

Tower graphs summed in quantum electro- 

dynamics to give an eikonal phase X(s,b) which 

If-z grows as s , E>O. 

The Pomeron pole and absorptive Pomeron cuts 

which lead to total cross sections which rise 

logarithmically to a constant. 

The triple Pomeron contribution to the elastic 

scattering amplitude. The contribution of this 

to the total cross section is proportional to 

log (log s). 

A Feynman graph representation of the triple 

Pomeron amplitude. 

Two cuts of Fig. 5 which contribute to Im Tel 

and, therefore, c 

Yields the inclusive cross section near the edge 

of phase space and thus the usual triple Pomeron 

result. 

Another cut which in the eikonal model serves 
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Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

to change the sign of Fig. 6a. 

A ladder graph representation of the t = 0 

Pomeron exchange with factorizable residue 

P2. 
Various sets of Reggeon graphs which are 

summed up in the text with the eikonal sign 

for Pomeron cuts. 

The behavior of the coupling constant function 

p(g) in most renormalizable field theories and 

in many non-Abelian gauge theories. The 

zeroes of p(g) where (3’< 0 govern the asymptotic 

behavior of Green functions in field theory. 

A picture of the one dimensional string 

stretching from 0 to 1 in the g parameter space. 

A vector X ( (r, T) is attached to each point .J 
P 

at each time 7, It is supposed to represent 

the displacement in real space-time of the 

string taken to be a hadron. 

The area between 0 <u < 1, +i < 7f swept 

out by the hadronic string. The classical 

action, Eq. 26 is chosen to be proportional to 

this area. 



Fig. 12 
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One string (hadron) splits into two strings 

(hadrons) to form the basic dual vertex. 
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